Enhancing Industrial Communication with Ethernet/Internet Protocol: A Study and Analysis of Real-Time Cooperative Robot Communication and Automation via Transmission Control Protocol/Internet Protocol

Author:

Seong JuYong1ORCID,Ranjan Rahul1ORCID,Kye Joongeup2,Lee Seungjae1,Lee Sungchul1

Affiliation:

1. Division of Computer Science and Engineering, Sunmoon University, Asan 31460, Republic of Korea

2. Department of Mechanical Engineering, Intelligent Robot Research Institute, Asan 31460, Republic of Korea

Abstract

This study explores the important task of validating data exchange between a control box, a Programmable Logic Controller (PLC), and a robot in an industrial setting. To achieve this, we adopt a unique approach utilizing both a virtual PLC simulator and an actual PLC device. We introduce an innovative industrial communication module to facilitate the efficient collection and storage of data among these interconnected entities. The main aim of this inquiry is to examine the implementation of Ethernet/IP (EIP), a relatively new addition to the industrial network scenery. It was designed using ODVA’s Common Industrial Protocol (CIP™). The Costumed real-time data communication module was programmed in C++ for the Linux Debian platform and elegantly demonstrates the impressive versatility of EIP as a means for effective data transfer in an industrial environment. The study’s findings provide valuable insights into Ethernet/IP’s functionalities and capabilities in industrial networks, bringing attention to its possible applications in industrial robotics. By connecting theoretical knowledge and practical implementation, this research makes a significant contribution to the continued development of industrial communication systems, ultimately improving the efficiency and effectiveness of automation processes.

Funder

Ministry of Science and ICT

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3