Abstract
To measure the vibration of a target by laser self-mixing interference (SMI), we propose a method that combines feature extraction and random forest (RF) without determining the feedback strength (C). First, the temporal, spectral, and statistical features of the SMI signal are extracted to characterize the original SMI signal. Secondly, these interpretable features are fed into the pretrained RF model to directly predict the amplitude and frequency (A and f) of the vibrating target, recovering the periodic vibration of the target. The results show that the combination of RF and feature extraction yields a fit of more than 0.94 for simple and quick measurement of A and f of unsmooth planar vibrations, regardless of the feedback intensity and the misalignment of the retromirror. Without a complex optical stage, this method can quickly recover arbitrary periodic vibrations from SMI signals without C, which provides a novel method for quickly implementing vibration measurements.
Funder
Natural Science Foundation of Heilongjiang Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献