Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin

Author:

Agbehadji Israel EdemORCID,Abayomi AbdultaofeekORCID,Bui Khac-Hoai NamORCID,Millham Richard C.ORCID,Freeman Emmanuel

Abstract

Waste management is one of the challenges facing countries globally, leading to the need for innovative ways to design and operationalize smart waste bins for effective waste collection and management. The inability of extant waste bins to facilitate sorting of solid waste at the point of collection and the attendant impact on waste management process is the motivation for this study. The South African University of Technology (SAUoT) is used as a case study because solid waste management is an aspect where SAUoT is exerting an impact by leveraging emerging technologies. In this article, a convolutional neural network (CNN) based model called You-Only-Look-Once (YOLO) is employed as the object detection algorithm to facilitate the classification of waste according to various categories at the point of waste collection. Additionally, a nature-inspired search method is used as learning rate for the CNN model. The custom YOLO model was developed for waste object detection, trained with different weights and backbones, namely darknet53.conv.74, darknet19_448.conv.23, Yolov4.conv.137 and Yolov4-tiny.conv.29, respectively, for Yolov3, Yolov3-tiny, Yolov4 and Yolov4-tiny models. Eight (8) classes of waste and a total of 3171 waste images are used. The performance of YOLO models is considered in terms of accuracy of prediction (Average Precision—AP) and speed of prediction measured in milliseconds. A lower loss value out of a percentage shows a higher performance of prediction and a lower value on speed of prediction. The results of the experiment show that Yolov3 has better accuracy of prediction as compared with Yolov3-tiny, Yolov4 and Yolov4-tiny. Although the Yolov3-tiny is quick at predicting waste objects, the accuracy of its prediction is limited. The mean AP (%) for each trained version of YOLO models is Yolov3 (80%), Yolov4-tiny (74%), Yolov3-tiny (57%) and Yolov4 (41%). This result of mAP (%) indicates that the Yolov3 model produces the best performance results (80%). In this regard, it is useful to implement a model that ensures accurate prediction to develop a smart waste bin system at the institution. The experimental results show the combination of KSA learning rate parameter of 0.0007 and Yolov3 is identified as the accurate model for waste object detection and classification. The use of nature-inspired search methods, such as the Kestrel-based Search Algorithm (KSA), has shown future prospect in terms of learning rate parameter determination in waste object detection and classification. Consequently, it is imperative for an EdgeIoT-enabled system to be equipped with Yolov3 for waste object detection and classification, thereby facilitating effective waste collection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Smart Garbage Bin Systems – A Comprehensive Survey

2. Design and development of smart trash bin prototype for municipal solid waste management;Maulana;Proceedings of the 2018 International Conference on ICT for Smart Society (ICISS),2018

3. The opportunities and value-adding activities of buy-back centres in South Africa's recycling industry: A value chain analysis

4. A Smart Bin Implementantion using LoRa;Ziouzios;Proceedings of the 4th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference,2019

5. Smart Dual Dustbin Model for Waste Management in Smart Cities;Rohit;Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT),2018

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chasing Pelican based Deep Learning for Multiple Object Detection from Single Input Trash Image;Multimedia Tools and Applications;2024-07-11

2. Energy efficient waste collection vehicle routing system using time series prediction;Multimedia Tools and Applications;2024-04-17

3. Edge Computing-based Intelligent Garbage Classification and Recognition Application;2023 4th International Conference on Computers and Artificial Intelligence Technology (CAIT);2023-12-13

4. Modelling of African Vulture Optimization Algorithm with Deep Learning-based Object Classification for Intelligent Manufacturing Systems;Journal of Smart Internet of Things;2023-12-01

5. A New Type of Dry Wet Separation Garbage Bin;2023 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3