Enhancing Landfill Monitoring and Assessment: A Proposal Combining GIS-Based Analytic Hierarchy Processes and Fuzzy Artificial Intelligence

Author:

Loureiro Anna Isabel Silva1ORCID,Bressane Adriano12ORCID,Nascimento Victor Fernandez3ORCID,Simões José Victor Orlandi2ORCID,Negri Rogério Galante24ORCID

Affiliation:

1. Graduate Program in Civil and Environmental Engineering, São Paulo State University, Eng, Luís Coube Avenue, 2085, Bauru CEP 17033-360, SP, Brazil

2. Institute of Science and Technology, São Paulo State University, Presidente Dutra Highway, Km 137,8, São José dos Campos CEP 12247-004, SP, Brazil

3. Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Estados Avenue, 5001, Santo André CEP 09210-580, SP, Brazil

4. Graduate Program in Natural Disasters, São Paulo State University, Presidente Dutra Highway, Km 137,8, São José dos Campos CEP 12247-004, SP, Brazil

Abstract

The global surge in urbanization and population growth has led to a significant increase in municipal solid waste generation, posing a considerable challenge in identifying suitable landfill sites. This study proposes a novel framework that enhances landfill site monitoring and assessment by combining GIS-based hierarchical analytical processes with a fuzzy inference system (FIS). The study employs a systematic approach involving phases such as feature selection, spatial analysis, criteria weighting, FIS building, and a case study conducted in São Paulo State, Brazil. The proposed framework effectively assesses landfill suitability and offers practical recommendations for landfill management and future site selection. This framework provides actionable recommendations for landfill monitoring and assessment, supporting landfill management while minimizing environmental and social impacts. It offers a comprehensive approach to landfill assessment, enhancing the sustainability of waste management practices. Further research can improve the proposed framework by refining feature selection and incorporating real-time data for continuous monitoring. Additionally, exploring the integration of emerging technologies, such as remote sensing and artificial intelligence, can further enhance landfill site monitoring and assessment.

Funder

Improvement of Higher Education, Ministry of Science, Technology, Innovation and Communications, Brazil

Publisher

MDPI AG

Subject

General Medicine

Reference64 articles.

1. Landfill site selection using multi criteria decision making: Influential factors for comparing locations;Rezaeisabzevar;J. Environ. Sci.,2020

2. Landfill site selection in Makkah using geographic information system and analytical hierarchy process;Osra;Waste Manag. Res.,2020

3. Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (2021). Panorama dos Resíduos Sólidos no Brasil, Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais.

4. GIS-based multicriteria municipal solid waste landfill suitability analysis: A review of the methodologies performed and criteria implemented;Demesouka;Waste Manag. Res.,2014

5. Modeling landfill site selection by multi-criteria decision making and fuzzy functions in GIS, case study: Shabestar, Iran;Bahrani;Environ. Earth Sci.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3