A Search Methodology Based on Industrial Ontology and Machine Learning to Analyze Georeferenced Italian Districts

Author:

Massaro AlessandroORCID,Cosoli Gabriele,Magaletti Nicola,Costantiello AlbertoORCID

Abstract

The subject of the proposed study is a method implementable for a search engine able to provide supply chain information, gaining the company’s knowledge base. The method is based on the construction of specific supply chain ontologies to enrich Machine Learning (ML) algorithm results able to filter and refine the searching process. The search engine is structured into two main search levels. The first one provides a preliminary filter of supply chain attributes based on the hierarchical clustering approach. The second one improves and refines the research by means of an ML classification and web scraping. The goal of the searching method is to identify a georeferenced supply chain district, finalized to optimize production and planning production strategies. Different technologies are proposed as candidates for the implementation of each part of the search engine. A preliminary prototype with limited functions is realized by means of Graphical User Interfaces (GUIs). Finally, a case study of the ice cream supply chain is discussed to explain how the proposed method can be applied to construct a basic ontology model. The results are performed within the framework of the project “Smart District 4.0”.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3