Biocompatible Piezoelectric PVDF/HA/AgNO3 Thin Film Prepared by the Solvent Casting Method

Author:

Markuniene Ieva,Rabiei MarziehORCID,Nasiri Sohrab,Urbaite SigitaORCID,Palevicius ArvydasORCID,Janusas GiedriusORCID

Abstract

In this study, new composites based on polyvinylidene fluoride (PVDF) were ornamented and prepared with hydroxyapatite (HA) and silver nitride (AgNO3). Taking into account the polarity of the solvent dimethyl sulfoxide, this solvent was used to disperse the particles. The aim of using DMSO was to create amorphous phases and the strong dipoles of the C–F bond to reduce the energy barrier and improve the electrical properties. The PVDF played the role of matrix in HA, and AgNO3 was used as reinforcing elements. X-ray diffraction of the samples directly showed the amorphous phase and mixed amorphous and crystalline phases when all three materials were used simultaneously for preparing the composite. The scanning electron microscopy (SEM) images of the samples confirmed the role of PVDF, HA, and AgNO3. Furthermore, the energy dispersive X-ray (EDX) analysis was performed and proved that the HA structure did not change when the ratio of CaP was equal to the ratio of natural HA. The electrical properties were investigated, and the amount of energy ranged from 56.50 to 125.20 mV. The final results showed that a designed device consisting of an active layer made of 0.1 g HA:0.5 g PVDF showed the highest energy barrier, the highest polarity, and surface energy, thus proving its relevance as potential material for energy harvesting applications.

Funder

the European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3