Modelling of Autonomous Search and Rescue Missions by Interval-Valued Neutrosophic WASPAS Framework

Author:

Semenas Rokas,Bausys RomualdasORCID

Abstract

The application of autonomous robots in search and rescue missions represents a complex task which requires a robot to make robust decisions in unknown and dangerous environments. However, imprecise robot movements and small measurement errors obtained by robot sensors can have an impact on the autonomous environment exploration quality, and therefore, should be addressed while designing search and rescue (SAR) robots. In this paper, a novel frontier evaluation strategy is proposed, that address technical, economic, social, and environmental factors of the sustainable environment exploration process, and a new extension of the weighted aggregated sum product assessment (WASPAS) method, modelled under interval-valued neutrosophic sets (IVNS), is introduced for autonomous mobile robots. The general-purpose Pioneer 3-AT robot platform is applied in simulated search and rescue missions, and the conducted experimental assessment shows the proposed method efficiency in commercial and public-type building exploration. By addressing the estimated measurement errors in the initial data obtained by the robot sensors, the proposed decision-making framework provides additional reliability for comparing and ranking candidate frontiers. The interval-valued multi-criteria decision-making method combined with the proposed frontier evaluation strategy enables the robot to exhaustively explore and map smaller SAR mission environments as well as ensure robot safety and efficient energy consumption in relatively larger public-type building environments.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3