Abstract
The formation of a skyrmion crystal and its phase transition are studied, taking into account the Dzyaloshinskii–Moriya (DM) interaction at the interface between a ferroelectric layer and a magnetic layer in a superlattice. Frustration is introduced in both magnetic and ferroelectric films. The films have a simple cubic lattice structure. The spins inside the magnetic layers are Heisenberg spins interacting with each other via nearest-neighbor (NN) exchange J m and next-nearest-neighbor (NNN) exchange J 2 m . The polarizations in the ferroelectric layers are assumed to be of Ising type with NN and NNN interactions J f and J 2 f . At the magnetoelectric interface, a DM interaction J m f between spins and polarizations is supposed. The spin configuration in the ground state is calculated by the steepest descent method. In an applied magnetic field H perpendicular to the layers, we show that the formation of skyrmions at the magnetoelectric interface is strongly enhanced by the frustration brought about by the NNN antiferromagnetic interactions J 2 m and J 2 f . Various physical quantities at finite temperatures are obtained by Monte Carlo simulations. We show the critical temperature, the order parameters of magnetic and ferroelectric layers as functions of the interface DM coupling, the applied magnetic field, and J 2 m and J 2 f . The phase transition to the disordered phase is studied in detail.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献