Face Image Age Estimation Based on Data Augmentation and Lightweight Convolutional Neural Network

Author:

Liu XinhuaORCID,Zou Yao,Kuang Hailan,Ma XiaolinORCID

Abstract

Face images contain many important biological characteristics. The research directions of face images mainly include face age estimation, gender judgment, and facial expression recognition. Taking face age estimation as an example, the estimation of face age images through algorithms can be widely used in the fields of biometrics, intelligent monitoring, human-computer interaction, and personalized services. With the rapid development of computer technology, the processing speed of electronic devices has greatly increased, and the storage capacity has been greatly increased, allowing deep learning to dominate the field of artificial intelligence. Traditional age estimation methods first design features manually, then extract features, and perform age estimation. Convolutional neural networks (CNN) in deep learning have incomparable advantages in processing image features. Practice has proven that the accuracy of using convolutional neural networks to estimate the age of face images is far superior to traditional methods. However, as neural networks are designed to be deeper, and networks are becoming larger and more complex, this makes it difficult to deploy models on mobile terminals. Based on a lightweight convolutional neural network, an improved ShuffleNetV2 network based on the mixed attention mechanism (MA-SFV2: Mixed Attention-ShuffleNetV2) is proposed in this paper by transforming the output layer, merging classification and regression age estimation methods, and highlighting important features by preprocessing images and data augmentation methods. The influence of noise vectors such as the environmental information unrelated to faces in the image is reduced, so that the final age estimation accuracy can be comparable to the state-of-the-art.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physically rational data augmentation for energy consumption estimation of electric vehicles;Applied Energy;2024-11

2. Facial Age Estimation Using Multi-Stage Deep Neural Networks;Electronics;2024-08-16

3. Artificial Intelligence in Age Estimation: a Comparative Study;2024 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2024-04-27

4. Age-API: are landmarks-based features still distinctive for invariant facial age recognition?;Multimedia Tools and Applications;2024-01-26

5. Asymmetric multi-period deep residual network face age estimation;International Journal of Communication Networks and Distributed Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3