Abstract
The symmetry concept is an intrinsic property of metric spaces as the metric function generalizes the notion of distance between two points. There are several remarkable results in science in connection with symmetry principles that can be proved using fixed point arguments. Therefore, fixed point theory and symmetry principles bear significant correlation between them. In this paper, we introduce the new definition of the eventually Δ -restrictive set-valued map together with the concept of p-orbital continuity. Further, we introduce another new concept called the Δ ( ϵ ) -restrictive set-valued map. We establish several fixed point results related to these maps and proofs of these results also provide us with schemes to find a fixed point. In a couple of results, the stronger condition of compactness of the underlying metric space is assumed. Some results are illustrated with examples.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献