Numerical Investigation of Forced Convective Heat Transfer and Performance Evaluation Criterion of Al2O3/Water Nanofluid Flow inside an Axisymmetric Microchannel

Author:

Irandoost Shahrestani Misagh,Maleki AkbarORCID,Safdari Shadloo MostafaORCID,Tlili Iskander

Abstract

Al2O3/water nanofluid conjugate heat transfer inside a microchannel is studied numerically. The fluid flow is laminar and a constant heat flux is applied to the axisymmetric microchannel’s outer wall, and the two ends of the microchannel’s wall are considered adiabatic. The problem is inherently three-dimensional, however, in order to reduce the computational cost of the solution, it is rational to consider only a half portion of the axisymmetric microchannel and the domain is revolved through its axis. Hence. the problem is reduced to a two-dimensional domain, leading to less computational grid. At the centerline (r = 0), as the flow is axisymmetric, there is no radial gradient (∂u/∂r = 0, v = 0, ∂T/∂r = 0). The effects of four Reynolds numbers of 500, 1000, 1500, and 2000; particle volume fractions of 0% (pure water), 2%, 4%, and 6%; and nanoparticles diameters in the range of 10 nm, 30 nm, 50 nm, and 70 nm on forced convective heat transfer as well as performance evaluation criterion are studied. The parameter of performance evaluation criterion provides valuable information related to heat transfer augmentation together with pressure losses and pumping power needed in a system. One goal of the study is to address the expense of increased pressure loss for the increment of the heat transfer coefficient. Furthermore, it is shown that, despite the macro-scale problem, in microchannels, the viscous dissipation effect cannot be ignored and is like an energy source in the fluid, affecting temperature distribution as well as the heat transfer coefficient. In fact, it is explained that, in the micro-scale, an increase in inlet velocity leads to more viscous dissipation rates and, as the friction between the wall and fluid is considerable, the temperature of the wall grows more intensely compared with the bulk temperature of the fluid. Consequently, in microchannels, the thermal behavior of the fluid would be totally different from that of the macro-scale.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3