Joint Communications and Sensing Employing Multi- or Single-Carrier OFDM Communication Signals: A Tutorial on Sensing Methods, Recent Progress and a Novel Design

Author:

Wu KaiORCID,Zhang Jian AndrewORCID,Huang Xiaojing,Guo Yingjie Jay

Abstract

Joint communications and sensing (JCAS) has recently attracted extensive attention due to its potential in substantially improving the cost, energy and spectral efficiency of Internet of Things (IoT) systems that need both radio frequency functions. Given the wide applicability of orthogonal frequency division multiplexing (OFDM) in modern communications, OFDM sensing has become one of the major research topics of JCAS. To raise the awareness of some critical yet long-overlooked issues that restrict the OFDM sensing capability, a comprehensive overview of OFDM sensing is provided first in this paper, and then a tutorial on the issues is presented. Moreover, some recent research efforts for addressing the issues are reviewed, with interesting designs and results highlighted. In addition, the redundancy in OFDM sensing signals is unveiled, on which, a novel method is based and developed in order to remove the redundancy by introducing efficient signal decimation. Corroborated by analysis and simulation results, the new method further reduces the sensing complexity over one of the most efficient methods to date, with a minimal impact on the sensing performance.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware software SoC co‐design analysis and implementation of MIMOOFDM for 4G/5G/6G eNodeB applications;Transactions on Emerging Telecommunications Technologies;2024-06-26

2. Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case;Electronics;2024-05-08

3. Robustness of ISAC Waveforms to Power Amplifier Distortion;2024 IEEE 4th International Symposium on Joint Communications & Sensing (JC&S);2024-03-19

4. Enablers for Efficient Wi-Fi Sensing;2023 IEEE Future Networks World Forum (FNWF);2023-11-13

5. Joint resource allocation and user association for multi-cell integrated sensing and communication systems;EURASIP Journal on Wireless Communications and Networking;2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3