Unbalanced Current Identification of Three-Core Power Cables Based on Phase Detection of Magnetic Fields

Author:

Liang Shangqing12,Yang Mingchao1,Yang Guoqing12,Wang Lin1,Cai Xiong3,Zhou Yuanguo4ORCID

Affiliation:

1. College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

2. Ocean Technology and Equipment Research Center, Hangzhou Dianzi University, Hangzhou 310018, China

3. Daishan County Electric Power Supply Branch of State Grid Zhejiang Electric Power Co., Ltd., Zhoushan 316200, China

4. College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Identifying unbalanced phase currents is crucial for control and fault alarm rates in power grids, especially in urban distribution networks. The zero-sequence current transformer, specifically designed for measuring unbalanced phase currents, offers advantages in measurement range, identity, and size, compared to using three separate current transformers. However, it cannot provide detailed information on the unbalance status beyond the total zero-sequence current. We present a novel method for identifying unbalanced phase currents based on phase difference detection using magnetic sensors. Our approach relies on analyzing phase difference data from two orthogonal magnetic field components generated by three-phase currents, as opposed to the amplitude data used in previous methods. This enables the differentiation of unbalance types (amplitude unbalance and phase unbalance) through specific criteria and allows for the simultaneous selection of an unbalanced phase current in the three-phase currents. In this method, the amplitude measurement range of magnetic sensors is no longer a critical factor, allowing for an easily attainable wide identification range for current line loads. This approach offers a new avenue for unbalanced phase current identification in power systems.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3