NISQE: Non-Intrusive Speech Quality Evaluator Based on Natural Statistics of Mean Subtracted Contrast Normalized Coefficients of Spectrogram

Author:

Zafar Shakeel1,Nizami Imran Fareed2ORCID,Rehman Mobeen Ur3ORCID,Majid Muhammad1ORCID,Ryu Jihyoung4ORCID

Affiliation:

1. Department of Computer Engineering, University of Engineering and Technology, Taxila 47050, Pakistan

2. Department of Electrical Engineering, Bahria University, Islamabad 44000, Pakistan

3. Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

4. Electronics and Telecommunications Research Institute (ETRI), Gwangju 61012, Republic of Korea

Abstract

With the evolution in technology, communication based on the voice has gained importance in applications such as online conferencing, online meetings, voice-over internet protocol (VoIP), etc. Limiting factors such as environmental noise, encoding and decoding of the speech signal, and limitations of technology may degrade the quality of the speech signal. Therefore, there is a requirement for continuous quality assessment of the speech signal. Speech quality assessment (SQA) enables the system to automatically tune network parameters to improve speech quality. Furthermore, there are many speech transmitters and receivers that are used for voice processing including mobile devices and high-performance computers that can benefit from SQA. SQA plays a significant role in the evaluation of speech-processing systems. Non-intrusive speech quality assessment (NI-SQA) is a challenging task due to the unavailability of pristine speech signals in real-world scenarios. The success of NI-SQA techniques highly relies on the features used to assess speech quality. Various NI-SQA methods are available that extract features from speech signals in different domains, but they do not take into account the natural structure of the speech signals for assessment of speech quality. This work proposes a method for NI-SQA based on the natural structure of the speech signals that are approximated using the natural spectrogram statistical (NSS) properties derived from the speech signal spectrogram. The pristine version of the speech signal follows a structured natural pattern that is disrupted when distortion is introduced in the speech signal. The deviation of NSS properties between the pristine and distorted speech signals is utilized to predict speech quality. The proposed methodology shows better performance in comparison to state-of-the-art NI-SQA methods on the Centre for Speech Technology Voice Cloning Toolkit corpus (VCTK-Corpus) with a Spearman’s rank-ordered correlation constant (SRC) of 0.902, Pearson correlation constant (PCC) of 0.960, and root mean squared error (RMSE) of 0.206. Conversely, on the NOIZEUS-960 database, the proposed methodology shows an SRC of 0.958, PCC of 0.960, and RMSE of 0.114.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3