Effects of Breeding Forest Musk Deer on Soil Bacterial Community Structure

Author:

Tang JieORCID,Suo Lijuan,Li Feiran,Bian Kun,Wang Qingxiong,Wang Yan,Lei Yinhu,Yang Chao

Abstract

Breeding captive forest musk deer is an important way to obtain musk resources, but it also causes changes in the ecological environment of the breeding site. This study compared the changes in soil bacterial communities inside and outside the captive breeding site and tried to find out its influencing factors. High-throughput sequencing analysis and other methods were used to analyze the changes in the bacterial community structure in the natural soil and forest surrounding the musk deer site after 4 years of captivity. The results showed that the main dominant phyla in the captive soil samples were Proteobacteria, Acidobacteria and Chloroflexi. In order, Sphingomonadales (8.7%), Acidobacteriales (9.9%) and Solibacterales (6.1%) were dominant in the captive soil, while Rhizobiales (11.3%) and Gaiellales (6.2%) were found in non-captive soil. The main soil-specific microorganisms under captive conditions were Burkholderiales, Pseudomonadales and Sphingomadales. These microorganisms mainly gather at the order level and can be used as indicator microorganisms. A canonical correspondence analysis (CCA) showed that the microbial diversity in captivity soil was significantly affected by the contents of organic matter, available phosphorus and total nitrogen. These results will provide a basis for the healthy breeding of animals and shed light on the protection of the ecological environment in the Bashan Mountains of Qinling.

Funder

Shaanxi Academy of Sciences Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference45 articles.

1. The Musk Deer of China;Wu,2006

2. The IUCN Red List of Threatened Specieshttp://www.iucnredlist.org/

3. The Musk Deer in China;Sheng,2007

4. Zoology, chemical composition, pharmacology, quality control and future perspective of Musk (Moschus): a review

5. The draft genome sequence of forest musk deer (Moschus berezovskii)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3