Refined Network Topology for Improved Reliability and Enhanced Dijkstra Algorithm for Optimal Path Selection during Link Failures in Cluster Microgrids

Author:

Pradeep Reddy GogulamudiORCID,Kumar Yellapragada Venkata PavanORCID,Kalyan Chakravarthi MaddikeraORCID,Flah AymenORCID

Abstract

Cluster microgrids are a group of interoperable smart microgrids, connected in a local network to exchange their energy resources and collectively meet their load. A microgrid can import/export energy to the neighboring microgrid in the network based on energy deficit/availability. However, in executing such an operation, a well-established communication network is essential. This network must provide a reliable communication path between microgrids. In addition, the network must provide an optimal path between any two microgrids in the network to optimize immediate energy generation, import requirements, and export possibilities. To meet these requirements, different conventional research approaches have been used to provide reliable communication, such as backup/alternative/Hot Standby Router Protocol (HSRP)-based redundant path concepts, in addition to traditional/renowned Dijkstra algorithms, in order to find the shortest path between microgrids. The HSRP-based mechanism provides an additional path between microgrids, but may not completely solve the reliability issue, especially during multiple link failures and simultaneous failures of the actual path and redundant path. Similarly, Dijkstra algorithms discussed in the literature do not work for finding the shortest path during link failures. Thus, to enhance reliability, this paper proposes a refined network topology that provides more communication paths between microgrids, while retaining the same number of total links needed, as in conventional HSRP-based networks. In addition, this paper proposes an enhanced Dijkstra algorithm to find the optimum path during link failures. Simulations are executed using NetSimTM by implementing test cases such as single-link and multiple-link failures. The results prove that the proposed topology and method are superior to conventional approaches.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Design for Sustainability in Product Engineering;The 4th International Electronic Conference on Applied Sciences;2023-11-22

2. THD Reduction of Improved Single Source MLI Using Upgraded Black Widow Optimization Algorithm;International Transactions on Electrical Energy Systems;2023-10-11

3. OPC UA Implementation for Industrial Automation - Part 1: Evaluating the Performance of PubSub Model;2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS);2023-09-01

4. OPC UA Implementation for Industrial Automation - Part 2: Integrating PubSub Model with TSN;2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS);2023-09-01

5. Energy-Efficient LoRa Routing for Smart Grids;Sensors;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3