Permeability-Enhancing Technology through Liquid CO2 Fracturing and Its Application

Author:

Jiang Zebiao,Quan Xiping,Tian Shixiang,Liu Hao,Guo Yaling,Fu Xiangxiang,Yang Xifa

Abstract

Liquid carbon dioxide (CO2) phase change fracturing (LCPCF) is an innovative technique to improve the efficiency of gas drainage from low-permeability coal seams of high gas content. However, fracture sprouting, extension and displacement changes of coal under LCPCF need further study, and corresponding field tests are also lacking. Therefore, a mechanical model based on the thermodynamic theory of CO2 phase change is developed in this paper. Then, the pressure change characteristics, crack propagation and displacement change of coal subjected to LCPCF were analyzed through numerical simulation. In addition, the permeability-enhancing effect of the field LCPCF test was analyzed. The results obtained from the numerical simulation show that during the LCPCF process, the crack-generation process changes with pressure as follows: microfracture–numerous microfractures–major macrofracture–macrofractures. During the development of fractures, the stress is incompletely symmetrically distributed in coal centered on the fracturing borehole. The failure occurs stochastically in the coal in the vicinity of the fracturing borehole at first, and then it gradually propagates to the inner seam of coal as the gas pressure increases. The following result can be obtained from field experiments: the permeability coefficient of coal seams after increasing the permeability through LCPCF is 2.60~3.97 times that of coal seams without presplitting. The average concentration of gas extracted in coal seams within the zone having undergone an increase in permeability through liquid CO2 fracturing is 2.14 times greater than that within the zone without presplitting. The average pure amount of gas extracted within the zone having undergone an increase in permeability through LCPCF is 3.78 times greater than that within the zone without presplitting. By comparing coal seams before and after fracturing in the field test, it can be seen that the LCPCF presents a favorable effect in increasing the permeability of low-permeability coal seams. This provides an effective approach for increasing the permeability of coal seams in coal mines with similar geological conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3