Abstract
Channelization is the most common hydraulic modification of urban rivers. Here, we assessed the effects of urban river morphology on benthic communities by analyzing the characteristics of benthic communities at various sites in channelized and natural rivers of the Longgang River system in southern China. We detected four Clitellata species, five Oligochaeta species, one Polychaeta species, 10 Gastropoda genera/species, two Bivalvia genera/species, two Crustacea genera/species, and 14 Insecta genera/species. Insecta and Oligochaeta were the dominant classes in the wet and dry seasons, and Chironomus plumosus was the most dominant species. The density of Clitellata was significantly lower in channelized rivers (0–0.74 ind/m2) than in natural rivers (0.61–4.85 ind/m2). The Shannon’s diversity index was significantly lower in channelized rivers (0.66–1.04) than in natural rivers (0.83–1.28) in the wet and dry season. NH3.N was positively correlated with Shannon’s diversity index, and chemical oxygen demand and river width were negatively correlated with Shannon’s diversity index. When the concentration of total phosphorus (TP) was low (<3 mg/L), it was positively correlated with Shannon’s diversity index. Our findings indicate that river channel morphology affects benthic faunal structure and diversity, but the effects varied among seasons. Minimized channelization will prevent the loss of aquatic biodiversity in subtropical urban rivers, as will preservation of natural rivers.
Funder
Shenzhen Science and Technology Program
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction