Modification of Iron-Tailings Concrete with Biochar and Basalt Fiber for Sustainability

Author:

Chen Zhewen,Wu NianzeORCID,Song Yuying,Xiang Junchen

Abstract

Currently, less than 15% of waste iron tailings are utilized. Iron tailings can be used as fine aggregate in concrete, but this kind of concrete has no coarse aggregate, resulting in low strength. Additionally, iron tailings contain some heavy metals, which will cause environmental pollution if improperly treated. In this study, the mechanical properties, sulfate resistance, and pore structure distribution of basalt fiber-biochar-concrete (PFB) were studied. Where basalt is to enhance the mechanical properties of samples, and biochar is to adsorb heavy metals in iron tailings, to prepare environmentally friendly materials. Unconfined compressive strength (UCS) test, flexural strength (FS), sulfate immersion test, leaching behavior, and mercury intrusion porosimetry (MIP) test were used to study the performance of the samples, and X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), and scanning electron microscope (SEM) was used to characterize the samples, explaining the change mechanism of the macroscopic test. The results show that the compressive strength of PFB increased by 2.5% but the flexural strength increased by 12%. The basalt and biochar improve the pore size distribution of samples, that is, the pore size greater than 10 nm is reduced while the pore size between 2 and 6 nm is increased. Biochar can effectively adsorb heavy metals of Cu, Zn, Pb, and Cd, and their leaching concentration is reduced by 50–70%. Basalt fiber improves the mixing performance of concrete, while biochar with a small particle size fills the micro pores in concrete; this paper provides a new idea of sustainability for the preparation of environmentally friendly materials and the utilization of waste iron tailings.

Funder

Innovation Program for College Students

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3