Comprehensive Review on Solar Stills—Latest Developments and Overview

Author:

Younis ObaiORCID,Hussein Ahmed KadhimORCID,Attia Mohammed El Hadi,Aljibori Hakim S. SultanORCID,Kolsi LiouaORCID,Togun HusseinORCID,Ali BaghORCID,Abderrahmane AissaORCID,Subkrajang KhanyaluckORCID,Jirawattanapanit AnuwatORCID

Abstract

This up-to-date and comprehensive literature study provides a rich overview of recent developments in several solar still types. This review examines a large number of theoretical, experimental, and computational studies connected to the single-slope, double-slope, solar still with a condenser, hybrid, and other limited types of solar stills. To make the work more relevant to readers, the authors provide a panoramic view of solar still varieties as well as a complete overview of the most recently published review papers in the solar stills field. The most important conclusions drawn from prior research are carefully discussed and outlined in a useful table to give interested researchers a good road map of many various sorts of solar stills and encourage them to pursue new research avenues in this field. The foremost key results of the evaluated work are presented in a table for readers’ convenience. The results indicated that the absorption in the basin was improved by adding charcoal, matt, sponge, jute and cotton clothes, dye, wick, porous or energy-storing material, black rubber, and floating absorber sheet. Moreover, the productivity of solar stills was significantly improved by using the inclined external flat-plate reflector, combined stills, condenser, sun tracking system, reflectors, greenhouse, hot water tank, solar collector, heat exchanger, and solar pond. Further, heat loss was minimized by re-utilizing the latent heat of condensation, cover cooling, and increasing the insulation thickness.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3