Evaluation of the Effects of Water and Salinity Stress on the Growth and Biochemistry of Alfalfa (Medicago sativa L.) at the Branching Stage

Author:

Hou Chenli,Li Xianyue,Tian Delong,Xu Bing,Zhang Chen,Ren Jie,Chen Ning

Abstract

The response of alfalfa to water and salinity stress differs during the whole growth period, and water stress has the most severe effects on the yield of alfalfa at the branching stage. However, the presence of soil salt can also enhance its drought resistance and alleviate the impact of water stress on yield. Thus, information on the responses of aboveground biomass, water-use efficiency and osmolytes to water and salinity stress at the branching stages of alfalfa development is urgently required. A pot experiment that combined three irrigation levels of 55–70% (W1), 70–85% (W2) and 85–100% (W3) of field capacity (FC) and four salinity levels was conducted in Dengkou County, Inner Mongolia, China, in 2018 and 2019. The percentage of mixed salt (NaCl:Na2SO4 = 1:1 [w/w]) added for the salinity treatments was 0, 2, 4 and 6% of the soil dry weight and was designated as S0–S3, respectively. The water consumption, biomass, osmolytes, such as proline and Na+, and the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and peroxidase (POD), of alfalfa were measured during its early flowering stage. In general, the plant height, aboveground biomass, root biomass and water consumption of alfalfa increased with the decrease in soil salinity and increase in the amount of irrigation applied. When the salt >3 g kg−1, alfalfa could improve its stress resistance by increasing the contents of proline and Na+ and the activity of POD and decreasing the activity of SOD, but the aboveground biomass and water consumption decreased. However, alfalfa has a certain cross adaptation ability under water and salt stress at the branching stage, particularly when salt is less than 3 g kg−1. Compared with single water stress, adding an appropriate amount of salt (≤3 g kg−1) increased the contents of proline and Na+ and the activities of SOD and POD, which led to water consumption and aboveground biomass of alfalfa increases of 11.93% and 17.51%, respectively. In conclusion, the alfalfa was tolerant to moderate (3 g kg−1) salt stress. The alfalfa with higher proline, SOD and POD activity and Na+ was better able to yield well under salt stress. Meanwhile, combined with moderate irrigation (70–85% FC), the productivity of alfalfa was improved better. The results can provide a theoretical basis for the utilization of alfalfa in salinized land.

Funder

National Key Research and Development Program of China

Science and Technology Program of Inner Mongolia Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3