Abstract
With the rapid development of urban rail transit, the scientific assurance of pedestrian safety has become an important issue. Orderly behavior is a crucial factor affecting pedestrian safety. Therefore, in-depth research into pedestrian behavior is needed. This study carries out an evaluation of safety in pedestrian flows by establishing a new force model based on real-time data. In this model, we consider the microscopic characteristics of pedestrians and define four force influence mechanisms for simulating pedestrian behavior. Compared with existing models, this model incorporates partial impact dynamics to make it applicable to the particular environment of subway stations. Through the validation of real-world data, it is demonstrated that the model can accurately describe pedestrian behavior and better reproduce the characteristics of pedestrians. The influence of pedestrians and of environmental factors on the model are also discussed. Using our model, we propose a risk evaluation system based on pedestrian volatility. By using real-time pedestrian information from subway stations, the potential risk to pedestrians can be discerned and assessed in advance. This research advances the management of pedestrian safety and provides a framework for studying behavior models and for safety evaluation.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献