Abstract
Atmospheric stability has been studied for decades. There are several methodologies that evolved over the years. In this study, a special experimental meteorological mast that has been erected to a complex site has been used to calculate dimensionless Obukhov length ( ζ = z L ) , dimensionless momentum ( φ m ), and heat coefficients ( φ h ). The results are compared with the ones from average value approaches: Richardson number, flux-profile (F-P) relations, and wind shear exponent methods. The results show that the estimated ζ values, using the bulk Richardson number, get along well with the reference ζ within the neutral and stable regimes. F-P relations and wind shear exponent methods result in the best agreement for stable and neutral regimes. Nevertheless, average oriented methods are not reliable for the other regimes.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)