Research on Transformer Partial Discharge UHF Pattern Recognition Based on Cnn-lstm

Author:

Zhou Xiu,Wu Xutao,Ding Pei,Li Xiuguang,He Ninghui,Zhang Guozhi,Zhang XiaoxingORCID

Abstract

In view of the fact that the statistical feature quantity of traditional partial discharge (PD) pattern recognition relies on expert experience and lacks certain generalization, this paper develops PD pattern recognition based on the convolutional neural network (cnn) and long-term short-term memory network (lstm). Firstly, we constructed the cnn-lstm PD pattern recognition model, which combines the advantages of cnn in mining local spatial information of the PD spectrum and the advantages of lstm in mining the PD spectrum time series feature information. Then, the transformer PD UHF (Ultra High Frequency) experiment was carried out. The performance of the constructed cnn-lstm pattern recognition network was tested by using different types of typical PD spectrums. Experimental results show that: (1) for the floating potential defects, the recognition rates of cnn-lstm and cnn are both 100%; (2) cnn-lstm has better recognition ability than cnn for metal protrusion defects, oil paper void defects, and surface discharge defects; and (3) cnn-lstm has better overall recognition accuracy than cnn and lstm.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Variation of Discharge Characteristics With Temperature in Moving Transformer Oil Contaminated by Metallic Particles

2. Localization of Partial Discharges Inside a Transformer Winding Using a Ladder Network Constructed From Terminal Measurements

3. Pattern Recognition of Unknown Types of Partial Discharge Based on Improved SVDD Algorithm and Mahalanobis Distance;Gao;Trans. China Electrotech. Soc.,2018

4. Pattern recognition of unknown partial discharge based on improved SVDD

5. Insulation Defects Discrimination in GIS by Fisher Discriminant Analysis of Partial Discharge;Ding;High Volt. Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3