Interfacial Phenomena at the Interface in the System «Carbon Primary Materials-Water Solutions of Surfactants» for Cement Materials

Author:

Shekhovtsova SvetlanaORCID,Korolev Evgenii

Abstract

The formation of sustainable concrete is directly relaed to the intensity of the processes occurring at the interface of phases. The study of the surface properties of CNPLUS carbon nanotubes in solutions of various plasticizers was carried out by measuring and calculating adsorption. The applicability of the adsorption value is for forecasting both the efficiency of dispersion and aggregative and sedimentative stability of the obtained dispersion systems. It was stated that two-dimensional pressure arising at the interface of adsorption layers in the dispersive medium with the surfactant Tensafor 2553.2 J/m2 is sufficient to overcome adhesive strength on a small area of the localized contact of carbon nanoparticles CNPLUS, which explains the peptization and stabilization of the particles’ surface. It was established that full stabilization of nanoparticles in the aqueous dispersive medium could be ensured only by means of soap-like surfactants, with the compound potassium naphthalene sulfonate (Tensafor). It ensures formation of the micelle-like structure in coagulation layers that forms a structural and mechanical barrier with the external hydrophilic surface. This leads to the increase in the ultimate tensile strength of the concrete grout specimens by 38%.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

Reference55 articles.

1. Nanotechnology in materials science. Analysis of the status and achievements. Ways of development;Korolev;Stroitel’Nye Mater.,2014

2. Properties of cement mortars dispersed-reinforced with modified microfiber;Guryeva;Vestn. Orenb. Gos. Univ.,2015

3. Development of aggregationally and sedimentationally resistant nanosuspension for efficient polymer modified bitumen

4. The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites

5. Synthesis of carbon nanotubes on sand grains for mortar reinforcement

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3