Localization Properties of a Quasiperiodic Ladder under Physical Gain and Loss: Tuning of Critical Points, Mixed-Phase Zone and Mobility Edge

Author:

Roy SouvikORCID,Maiti Santanu K.ORCID,Pérez Laura M.ORCID,Silva Judith Helena OjedaORCID,Laroze DavidORCID

Abstract

We explore the localization properties of a double-stranded ladder within a tight-binding framework where the site energies of different lattice sites are distributed in the cosine form following the Aubry–André–Harper (AAH) model. An imaginary site energy, which can be positive or negative, referred to as physical gain or loss, is included in each of these lattice sites which makes the system a non-Hermitian (NH) one. Depending on the distribution of imaginary site energies, we obtain balanced and imbalanced NH ladders of different types, and for all these cases, we critically investigate localization phenomena. Each ladder can be decoupled into two effective one-dimensional (1D) chains which exhibit two distinct critical points of transition from metallic to insulating (MI) phase. Because of the existence of two distinct critical points, a mixed-phase (MP) zone emerges which yields the possibility of getting a mobility edge (ME). The conducting behaviors of different energy eigenstates are investigated in terms of inverse participation ratio (IPR). The critical points and thus the MP window can be selectively controlled by tuning the strength of the imaginary site energies which brings a new insight into the localization aspect. A brief discussion on phase transition considering a multi-stranded ladder was also given as a general case, to make the present communication a self-contained one. Our theoretical analysis can be utilized to investigate the localization phenomena in different kinds of simple and complex quasicrystals in the presence of physical gain and/or loss.

Funder

Centers of Excellence with BASAL/ANID

FONDECYT

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3