M-SKSNet: Multi-Scale Spatial Kernel Selection for Image Segmentation of Damaged Road Markings

Author:

Wang Junwei12,Liao Xiaohan1,Wang Yong1ORCID,Zeng Xiangqiang12ORCID,Ren Xiang1,Yue Huanyin1,Qu Wenqiu12ORCID

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

It is a challenging task to accurately segment damaged road markings from images, mainly due to their fragmented, dense, small-scale, and blurry nature. This study proposes a multi-scale spatial kernel selection net named M-SKSNet, a novel model that integrates a transformer and a multi-dilated large kernel convolutional neural network (MLKC) block to address these issues. Through integrating multiple scales of information, the model can extract high-quality and semantically rich features while generating damage-specific representations. This is achieved by leveraging both the local and global contexts, as well as self-attention mechanisms. The performance of M-SKSNet is evaluated both quantitatively and qualitatively, and the results show that M-SKSNet achieved the highest improvement in F1 by 3.77% and in IOU by 4.6%, when compared to existing models. Additionally, the effectiveness of M-SKSNet in accurately extracting damaged road markings from images in various complex scenarios (including city roads and highways) is demonstrated. Furthermore, M-SKSNet is found to outperform existing alternatives in terms of both robustness and accuracy.

Funder

National Key Research and Development Program of China

Key Technology of Intelligent Inspection of Highway UAV Network by Remote Sensing

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3