A Long-Duration Glacier Change Analysis for the Urumqi River Valley, a Representative Region of Central Asia

Author:

Wang Lin12,Yang Shujing123ORCID,Chen Kangning4,Liu Shuangshuang123,Jin Xiang123,Xie Yida123

Affiliation:

1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2. Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Geography, Nanjing Normal University, Nanjing 210023, China

Abstract

The increasing global warming trend has resulted in the mass loss of most glaciers. The Urumqi Vally, located in the dry and cold zone of China, and its widely dispersed glaciers are significant to the regional ecological environment, oasis economic development, and industrial and agricultural production. This is representative of glaciers in Middle Asia and represents one of the world’s longest observed time series of glaciers, beginning in 1959. The Urumqi Headwater Glacier No. 1 (UHG-1) has a dominant presence in the World Glacier Monitoring Service (WGMS). This paper supplies a comprehensive analysis of past studies and future modeling of glacier changes in the Urumqi Valley. It has received insufficient attention in the past, and the mass balance of UHG-1 was used to verify that the geodetic results and the OGGM model simulation results are convincing. The main conclusions are: The area of 48.68 ± 4.59 km2 delineated by 150 glaciers in 1958 decreased to 21.61 ± 0.27 km2 delineated by 108 glaciers in 2022, with a reduction of 0.47 ± 0.04 km2·a−1 (0.96% a−1 in 1958–2022). The glacier mass balance by geodesy is −0.69 ± 0.11 m w.e.a−1 in 2000–2022, which is just deviating from the measured result (−0.66 m w.e.a−1), but the geodetic result in this paper can be enough to reflect the glacier changes (−0.65 ± 0.11 m w.e.a−1) of the URB in 2000–2022. The future loss rate of area and volume will undergo a rapid and then decelerating process, with the fastest and slowest inflection points occurring around 2035 and 2070, respectively. High temperatures and large precipitation in summer accelerate glacier loss, and the corresponding lag period of glacier change to climate is about 2–3 years.

Funder

Third Comprehensive Scientific Expedition of Xinjiang Uyghur Autonmous Region

Science and Technology program of Gansu Province

State Key Laboratory of Cryospheric Science

Publisher

MDPI AG

Reference56 articles.

1. Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards;Benn;Earth-Sci. Rev.,2012

2. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009;Gardner;Science,2013

3. Asian Water Tower Change and its Impacts;Yao;Bull. Chin. Acad. Sci.,2019

4. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century;Hugonnet;Nature,2021

5. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Summary for Policymakers, Cambridge University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3