Solar Wind Charge-Exchange X-ray Emissions from the O5+ Ions in the Earth’s Magnetosheath

Author:

Zhang Zhicheng1,He Fei23ORCID,Zhang Xiao-Xin4,Liang Guiyun5,Wang Xueyi6,Wei Yong23

Affiliation:

1. School of Physics and Astronomy, China West Normal University, Nanchong 637009, China

2. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

4. National Center for Space Weather, China Meteorological Administration, Beijing 100081, China

5. Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

6. Physics Department, Auburn University, Auburn, AL 36849, USA

Abstract

The spectra and global distributions of the X-ray emissions generated by the solar wind charge-exchange (SWCX) process in the terrestrial magnetosheath are investigated based on a global hybrid model and a global geocoronal hydrogen model. Solar wind O6+ ions, which are the primary charge state for oxygen ions in solar wind, are considered. The line emissivity of the charge-exchange-borne O5+ ions is calculated by the Spectral Analysis System for Astrophysical and Laboratory (SASAL). It is found that the emission lines from O5+ range from 105.607 to 118.291 eV with a strong line at 107.047 eV. We then simulate the magnetosheath X-ray emission intensity distributions with a virtual camera at two positions of the north pole and dusk at six stages during the passing of a perpendicular interplanetary shock combined with a tangential discontinuity structure through the Earth’s magnetosphere. During this process, the X-ray emission intensity increases with time, and the maximum value is 27.11 keV cm−2 s−1 sr−1 on the dayside, which is 4.5 times that before the solar wind structure reached the Earth. A clear shock structure can be seen in the magnetosheath and moves earthward. The maximum emission intensity seen at dusk is always higher than that seen at the north pole.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3