Vector Approximate Message Passing Based OFDM-IM Detection for Underwater Acoustic Communications

Author:

Feng Xiao12,Tian Feng12,Zhou Mingzhang23ORCID,Sun Haixin23ORCID,Qasem Zeyad A. H.4

Affiliation:

1. School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. Key Laboratory of Southeast Coast Marine Information Intelligent Perception and Application, Ministry of Natural Resources, Zhangzhou 363099, China

3. School of Informatics, Xiamen University, Xiamen 361005, China

4. School of Electronic and Computer Engineering, Peking University, Shenzhen 518005, China

Abstract

Orthogonal frequency division multiplexing with index modulation (OFDM-IM) has great potential for the implementation of high spectral-efficiency underwater acoustic (UWA) communications. However, general receivers consisting of the optimal maximum likelihood detection suffer from high computational load, which prohibits real-time data transmissions in underwater scenarios. In this paper, we propose a detection based on a vector approximate message passing (VAMP) algorithm for UWA OFDM-IM communications. Firstly, a VAMP framework with a non-loopy factor graph for index detection is formulated. Secondly, by utilizing the sparsity inherently existing in OFDM-IM symbols, a novel shrinkage function is derived based on the minimum mean square error criterion, which guarantees better posterior estimation. To reduce the errors from estimated non-existing indices, one trick is utilized to search the elements from the look-up table with the minimal Euclidean distance for the replacement of erroneously estimated indices. Experiments verify the advantages of the proposed detector in terms of low complexity, robustness and effectiveness compared with the state-of-art benchmarks.

Funder

Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications

National Natural Science Foundation of China

Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3