A Task Scheduling Optimization Method for Vehicles Serving as Obstacles in Mobile Edge Computing Based IoV Systems

Author:

Feng MingweiORCID,Yao HaiqingORCID,Li Jie

Abstract

In recent years, as more and more vehicles request service from roadside units (RSU), the vehicle-to-infrastructure (V2I) communication links are under tremendous pressure. This paper first proposes a dynamic dense traffic flow model under the condition of fading channel. Based on this, the reliability is redefined according to the real-time location information of vehicles. The on-board units (OBU) migrate intensive computing tasks to the appropriate RSU to optimize the execution time and calculating cost at the same time. In addition, competitive delay is introduced into the model of execution time, which can describe the channel resource contention and data conflict in dynamic scenes of the internet of vehicles (IoV). Next, the task scheduling for RSU is formulated as a multi-objective optimization problem. In order to solve the problem, a task scheduling algorithm based on a reliability constraint (TSARC) is proposed to select the optimal RSU for task transmission. When compared with the genetic algorithm (GA), there are some improvements of TSARC: first, the quick non-dominated sorting is applied to layer the population and reduce the complexity. Second, the elite strategy is introduced with an excellent nonlinear optimization ability, which ensures the diversity of optimal individuals and provides different preference choices for passengers. Third, the reference point mechanism is introduced to reserve the individuals that are non-dominated and close to reference points. TSARC’s Pareto based multi-objective optimization can comprehensively measure the overall state of the system and flexibly schedule system resources. Furthermore, it overcomes the defects of the GA method, such as the determination of the linear weight value, the non-uniformity of dimensions among objectives, and poor robustness. Finally, numerical simulation results based on the British Highway Traffic Flow Data Set show that the TSARC performs better scalability and efficiency than other methods with different numbers of tasks and traffic flow densities, which verifies the previous theoretical derivation.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3