Design and Characterization of In-Plane Piezoelectric Microactuators

Author:

Toledo JavierORCID,Ruiz-Díez VictorORCID,Diaz-Molina Alex,Ruiz David,Donoso Alberto,Wistrela Elisabeth,Kucera Martin,Schmid Ulrich,Hernando-García Jorge, ,

Abstract

In this paper, two different piezoelectric microactuator designs are studied. The corresponding devices were designed for optimal in-plane displacements and different high flexibilities, proven by electrical and optical characterization. Both actuators presented two dominant vibrational modes in the frequency range below 1 MHz: an out-of-plane bending and an in-plane extensional mode. Nevertheless, the latter mode is the only one that allows the use of the device as a modal in-plane actuator. Finite Element Method (FEM) simulations confirmed that the displacement per applied voltage was superior for the low-stiffness actuator, which was also verified through optical measurements in a quasi-static analysis, obtaining a displacement per volt of 0.22 and 0.13 nm/V for the low-stiffness and high-stiffness actuator, respectively. In addition, electrical measurements were performed using an impedance analyzer which, in combination with the optical characterization in resonance, allowed the determination of the electromechanical and stiffness coefficients. The low-stiffness actuator exhibited a stiffness coefficient of 5 × 104 N/m, thus being more suitable as a modal actuator than the high-stiffness actuator with a stiffness of 2.5 × 105 N/m.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3