Abstract
As well known, potential induced degradation (PID) strongly decreases the performance of photovoltaic (PV) strings made of several crystalline silicon modules in hot and wet climates. In this paper, PID tests have been performed on commercial copper indium gallium selenide (CIGS) modules to investigate if this degradation may be remarkable also for CIGS technology. The tests have been conducted inside an environmental chamber where the temperature has been set to 85 °C and the relative humidity to 85%. A negative potential of 1000 V has been applied to the PV modules in different configurations. The results demonstrate that there is a degradation affecting the maximum power point and the fill factor of the current-voltage (I-V) curves. In fact, the measurement of the I-V curves at standard test condition show that all the parameters of the PV modules are influenced. This reveals that CIGS modules suffer PID under high negative voltage: this degradation occurs by different mechanisms, such as shunting, observed only in electroluminescence images of modules tested with negative bias. After the stress test, PID is partially recovered by applying a positive voltage of 1000 V and measuring the performance recovery of the degraded modules. The leakage currents flowing during the PID test in the chamber are measured with both positive and negative voltages; this analysis indicates a correlation between leakage current and power losses in case of negative potential.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献