Author:
Chen Junling,Xu Yiqing,Li Jinwei
Abstract
An embedded-ring foundation connected to the steel tower above it by inserting the steel ring into the concrete foundation is a traditional and widely used form for wind turbine towers. An insufficiently embedded depth of the steel ring leads to stress concentration on the corner of the concrete above the windward-side T-shaped plate. A damage zone of concrete develops, leading to gaps between the steel ring and the foundation concrete and a decline in the restrain stiffness of the foundation pier, which induces a larger horizontal displacement of the steel tower and a decrease in the natural frequency for the wind turbine system. To improve the fatigue life of the concrete around the steel ring under the precondition of not destroying the original foundation, a strengthening method using a circumferential prestressing technique is proposed in this paper. A series of numerical analyses were carried out to analyze the stress state change in the foundation concrete before and after strengthening. The fatigue life of the concrete above the T-shaped plate was evaluated according to CEB-FIP model code (fib Model Code for Concrete Structures 2010). The results show that the strengthening method can effectively decrease the fatigue stress amplitude and improve the fatigue life of the concrete above the T-shaped plate.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference25 articles.
1. Local damage analysis of near foundation ring in wind turbine foundation;Kang;Acta Energy Sol. Sin.,2014
2. Cracks in Onshore Wind Power Foundations Causes and Consequences
http://www.caithnesswindfarms.co.uk/cracks.pdf
3. Fatigue strength assessment of a wind turbine’s foundation-tower transitional ring;Fan;Acta Energy Sol. Sin.,2012
4. Structural integrity monitoring of onshore wind turbine concrete foundations
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献