NF-κB–Dependent Snail Expression Promotes Epithelial–Mesenchymal Transition in Mastitis

Author:

Liu Haokun,Zhao Ying,Wu Yanfang,Yan Yutong,Zhao Xiaoe,Wei Qiang,Ma BaohuaORCID

Abstract

Mastitis is a common and important clinical disease in ruminants. This may be associated with inflammatory fibrosis if not treated promptly. Inflammation-derived fibrosis is usually accompanied by epithelial–mesenchymal transition (EMT) in epithelial cells. However, the precise molecular mechanism underlying mastitis-induced fibrosis remains unclear. Nuclear factor kappa-B (NF-κB) and Snail are key regulators of EMT. In this study, primary goat mammary epithelial cells (GMECs) were treated with 10 μg/mL lipopolysaccharide (LPS) for 14 d to mimic the in vivo mastitis environment. After LPS treatment, the GMECs underwent mesenchymal morphological transformation and expressed mesenchymal cell markers. Snail expression was induced by LPS and was inhibited by suppression of the TLR4/NF-κB signaling pathway. Snail knockdown alleviated LPS-induced EMT and altered the expression of inflammatory cytokines. Finally, we found that the expression of key molecules of the TLR4/NF-κB/Snail signaling pathway was increased in mastitis tissues. These results suggest that Snail plays a vital role in LPS-induced EMT in GMECs and that the mechanism is dependent on the activation of the TLR4/NF-κB signaling pathway.

Funder

Shaanxi Transformation Project of Agricultural Science and Technology Innovation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3