Abstract
Evaluating laboratory animals’ health and thermostability are fundamental components of all experimental designs. Alterations in either one of these parameters have been shown to trigger physiological changes that can compromise the welfare of the species and the replicability and robustness of the results obtained. Due to the nature and complexity of evaluating and managing the species involved in research protocols, non-invasive tools such as infrared thermography (IRT) have been adopted to quantify these parameters without altering them or inducing stress responses in the animals. IRT technology makes it possible to quantify changes in surface temperatures that are derived from alterations in blood flow that can result from inflammatory, stressful, or pathological processes; changes can be measured in diverse regions, called thermal windows, according to their specific characteristics. The principal body regions that were employed for this purpose in laboratory animals were the orbital zone (regio orbitalis), auricular pavilion (regio auricularis), tail (cauda), and the interscapular area (regio scapularis). However, depending on the species and certain external factors, the sensitivity and specificity of these windows are still subject to controversy due to contradictory results published in the available literature. For these reasons, the objectives of the present review are to discuss the neurophysiological mechanisms involved in vasomotor responses and thermogenesis via BAT in laboratory animals and to evaluate the scientific usefulness of IRT and the thermal windows that are currently used in research involving laboratory animals.
Subject
General Veterinary,Animal Science and Zoology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献