Computational Fluid Dynamics (CFD) Modeling and Analysis of Hydrocarbon Vapor Cloud Explosions (VCEs) in Amuay Refinery and Jaipur Plant Using FLACS

Author:

Sajid ZamanORCID,Khan Muhammad Kashif,Rahnama Alireza,Moghaddam Farzan Sahari,Vardhan Kirti,Kalani Reema

Abstract

Process safety helps prevent the unexpected and unplanned release of flammable and toxic chemicals, leading to poisonous gas clouds, fires, and explosions. Vapor cloud explosions (VCEs) are among the most severe hazards to humans and the environment in process facilities. Therefore, process safety demands to use best and reliable techniques to model VCEs in process industries and storage tanks of flammable chemicals. In this regard, the Computational Fluid Dynamics (CFD) models are more appropriate, as these models provide three-dimensional (3D) modeling of all sequences of events in an accident. In this study, CFD is used to model VCE in two industrial accidents: the Amuay refinery disaster (happened in 2012) and the Indian Oil Corporation’s (IOC) Jaipur terminal (2009). This work studies 3D CFD modeling of flammable cloud explosion in the real-time configuration for both accidents. FLACS (FLame ACceleration Simulator), a CFD software, is used to simulate the loss of hydrocarbon containment, cloud formation, and explosion in both industrial case studies. The ignition locations and grid sizes were varied to analyze their influence on explosion overpressure, temperature, vapor velocity, and fuel mass. This work also investigated the effect of geometry complexity on the explosion. Results showed that, as opposed to the coarse grid, the fine grid provides more precision in the analysis. The study also reveals an explosion overpressure of the order 4–15 bar (g) for the given case studies. This study’s results can help perform a qualitative and quantitative risk assessment of the Amuay refinery accident and Jaipur fire. The simulation of different scenarios can help develop and improve safety guidelines to mitigate similar accidents.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference40 articles.

1. LNG Risk-Based Safety: Modeling and Consequence Analysis;Woodward,2010

2. King’s Safety in the Process Industries;King,1998

3. A MEMCIF-IN method for safety risk assessment in oil and gas industry based on interval numbers and risk attitudes

4. Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants;Casal,2017

5. Modeling and analysis of vapour cloud explosions knock-on events by using a Petri-net approach

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3