Investigating the Cellular Uptake of Model Nanoplastics by Single-Cell ICP-MS

Author:

Cassano Domenico1ORCID,Bogni Alessia1,La Spina Rita1,Gilliland Douglas1,Ponti Jessica1ORCID

Affiliation:

1. European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy

Abstract

A synthetic route to producing gold-doped environmentally relevant nanoplastics and a method for the rapid and high-throughput qualitative investigation of their cellular interactions have been developed. Polyethylene (PE) and polyvinyl chloride (PVC) nanoparticles, doped with ultrasmall gold nanoparticles, were synthesized via an oil-in-water emulsion technique as models for floating and sedimenting nanoplastics, respectively. Gold nanoparticles were chosen as a dopant as they are considered to be chemically stable, relatively easy to obtain, interference-free for elemental analysis, and suitable for bio-applications. The suitability of the doped particles for quick detection via inductively coupled plasma mass spectrometry (ICP-MS), operating in single-cell mode (scICP-MS), was demonstrated. Specifically, the method was applied to the analysis of nanoplastics in sizes ranging from 50 to 350 nm, taking advantage of the low limit of detection of single-cell ICP-MS for gold nanoparticles. As an initial proof of concept, gold-doped PVC and PE nanoplastics were employed to quantify the interaction and uptake of nanoplastics by the RAW 264.7 mouse macrophage cell line, using scICP-MS and electron microscopy. Macrophages were chosen because their natural biological functions would make them likely to internalize nanoplastics and, thus, would produce samples to verify the test methodology. Finally, the method was applied to assess the uptake by CaCo-2 human intestinal cells, this being a more relevant model for humanexposure to those nanoplastics that are potentially available in the food chain. For both case studies, two concentrations of nanoplastics were employed to simulate both standard environmental conditions and exceptional circumstances, such as pollution hotspot areas.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3