Facile Construction of Porous ZnMn2O4 Hollow Micro-Rods as Advanced Anode Material for Lithium Ion Batteries

Author:

Wang Yuyan1,Xu Senyang1,Zhang Yamin1,Hou Linrui1,Yuan Changzhou1ORCID

Affiliation:

1. School of Materials Science & Engineering, University of Jinan, Jinan 250022, China

Abstract

Spinel ZnMn2O4 is considered a promising anode material for high-capacity Li-ion batteries due to their higher theoretical capacity than commercial graphite anode. However, the insufficient cycling and rate properties seriously limit its practical application. In this work, porous ZnMn2O4 hollow micro-rods (ZMO HMRs) are synthesized by a facile co-precipitation method coupled with annealing treatment. On the basis of electrochemical analyses, the as-obtained samples are first characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy techniques. The influences of different polyethylene glycol 400 (PEG 400) additions on the formation of the hollow rod structure are also discussed. The abundant multi-level pore structure and hollow feature of ZMO HMRs effectively alleviate the volume expansion issue, rendering abundant electroactive sites and thereby guaranteeing convenient Li+ diffusion. Thanks to these striking merits, the ZMO HMRs anode exhibits excellent electrochemical lithium storage performance with a reversible specific capacity of 761 mAh g−1 at a current density of 0.1 A g−1, and a long-cycle specific capacity of 529 mAh g−1 after 1000 cycles at 2.0 A g−1 and keep a remarkable rate capability. In addition, the assembled ZMO HMRs-based full cells deliver an excellent rate capacity, and when the current density returns to 0.05 A g−1, the specific capacity can still reach 105 mAh g−1 and remains at 101 mAh g−1 after 70 cycles, maintaining a material-level energy density of approximately 273 Wh kg−1. More significantly, such striking electrochemical performance highlights that porous ZMO HMRs could be a promising anode candidate material for LIBs.

Funder

National Natural Science Foundation of China

Taishan Scholars, Jinan Independent Innovative Team, Major Program of Shandong Province Natural Science Foundation, Science and Technology Program of University of Jinan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3