Reusable Fe2O3/TiO2/PVC Photocatalysts for the Removal of Methylene Blue in the Presence of Simulated Solar Radiation

Author:

Jagodić Ivana1ORCID,Guth Imre2,Lukić-Petrović Svetlana2,Tamindžija Dragana3ORCID,Šojić Merkulov Daniela1ORCID,Finčur Nina1ORCID,Bognár Szabolcs1ORCID,Putnik Predrag4ORCID,Banić Nemanja1

Affiliation:

1. Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

2. Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

3. Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia

4. Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia

Abstract

Currently, environmental pollution by various organic pollutants (e.g., organic dyes) is a serious, emerging global issue. The aqueous environment is highly exposed to the harmful effects of these organic compounds. Furthermore, the commonly applied conventional purification techniques are not sufficient enough. Heterogeneous photocatalysis and the photo-Fenton process are effective, low-cost and green alternatives for the removal of organic pollutants. In this study, different iron(III) oxide/titanium(IV) oxide/polyvinyl chloride (Fe2O3/TiO2/PVC) nanocomposites in tablet form were investigated in the photodegradation of methylene blue (MB) under simulated sunlight, and their possible antibacterial effects were examined. The newly synthesized nanocomposites were characterized by scanning electron microscope, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, and Raman spectroscopy. The results showed a hematite crystal form in the case of Fe2O3(2) and Fe2O3 samples, while the Fe2O3(1) sample showed a combination of hematite and synthetic mineral akaganeite. The highest photocatalytic efficiency was achieved in the presence of Fe2O3/TiO2/PVC, when 70.6% of MB was removed. In addition, the possible photo-cleaning and reuse of the mentioned photocatalyst was also examined. Based on the results, it can be seen that the activity did not decrease after five successive runs. Nanocomposites also exhibited mild antibacterial effects against the two tested Gram-positive bacteria (S. aureus and B. cereus).

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3