A Study on the Increase of Leakage Current in AlGaN Detectors with Increasing Al Composition

Author:

Huang Yujie12ORCID,Yang Jing1,Zhao Degang13,Zhang Yuheng12,Liu Zongshun1,Liang Feng1,Chen Ping1

Affiliation:

1. State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

2. College of Materials Science and Optoelectronics Technology, University of Chinese Academy of Sciences, Beijing 100049, China

3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The dark leakage current of AlxGa1-xN Schottky barrier detectors with different Al contents is investigated. It was found that the dark leakage of AlxGa1-xN detectors increased with increasing Al content. The XRD and SIMS results showed that there was no significant difference of the dislocation density and carbon impurity concentration in five AlxGa1-xN samples with different Al content. This was likely not the main reason for the difference in dark leakage current of AlxGa1-xN detectors. However, the results of positron annihilation showed that the vacancy defect concentration increased with increasing Al content. This was consistent with the result that the dark leakage current increased with increasing Al content. With the increase of vacancy concentration, the vacancy defect energy levels also increased, and the probability of electron tunneling through defect levels increased. In contrast, the Schottky barrier height decreased, which eventually led to the increase of dark leakage current. This discovery should be beneficial to an accurate control of the performance of AlxGa1-xN detectors.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Youth Innovation Promotion Association of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alpha induced gamma emission spectroscopy for the determination of nitrogen in materials;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-03

2. Studying the Effect of Type of Surface Passivation Layer on Performance Parameters of AlGaN MSM Detector;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3