Facile Preparation of Cellulose Aerogels with Controllable Pore Structure

Author:

Qiu Jiahao1,Guo Xingzhong12ORCID,Lei Wei3,Ding Ronghua3,Zhang Yun3,Yang Hui1

Affiliation:

1. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China

3. Pan Asia Microvent Tech (Jiangsu) Corporation & Zhejiang University Micro-Nano-Porous Materials United Research Development Center, Changzhou 213100, China

Abstract

Cellulose aerogels are the latest generation of aerogels and have also received extensive attention due to their renewable and biocompatible properties. Herein, cellulose aerogel was facilely prepared by using NaOH/urea solution as solvent, raising the temperature to control gelation and drying wet gel sequentially. With NaOH/urea solution as solvent, the cellulose concentration has an important impact on the micromorphology of cellulose aerogels, while the aging time rarely affects the micromorphology. The appropriate solvent and drying method allow the formation of different cellulose crystalline structures. Different from the Cellulose Ⅰ crystalline structure of raw cellulose powder, the cellulose phase of as-prepared cellulose aerogels belongs to the Cellulose Ⅱ crystalline structure, and to some extent the pyrolysis temperature is also lower than that of raw cellulose powder. The resultant cellulose aerogel prepared by using NaOH/urea solution as solvent and freeze-drying has a uniform macroporous structure with a macropore size of 1~3 µm.

Funder

the National Natural Science Foundation of China

the Open Project Fund of State Key Laboratory of Silicon Materials

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3