Affiliation:
1. Computer Science and Information Engineering School, Xiamen Institute of Technology, Xiamen 361021, China
2. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract
Quasi-bound states in the continuum (quasi-BIC) in all-dielectric metasurfaces provide a crucial platform for sensing due to its ability to enhance strong matter interactions between light-waves and analytes. In this study, a novel high-sensitivity all-dielectric sensor composed of a periodic array of silicon (Si) plates with square nanoholes in the continuous near-infrared band is theoretically proposed. By adjusting the position of the square nanohole, the symmetry-protected BIC and Friedrich–Wintgen BIC (FW–BIC) can be excited. The torodial dipole (TD) and electric quadruple (EQ) are demonstrated to play a dominating role in the resonant modes by near-field analysis and multipole decomposition. The results show that the sensitivity, the Q-factor, and the corresponding figure of merit (FOM) can simultaneously reach 399 nm/RIU (RIU is refractive index unit), 4959, and 1281, respectively. Compared with other complex nanostructures, the proposed metasurface is more feasible and practical, which may open up an avenue for the development of ultrasensitive sensors.
Funder
Xiamen Natural Science Foundation Project
Embedded Artificial Intelligence Computing and Application Scientific Research Innovation Team of Xiamen Institute of Technology
Fujian Province Young and Middle-aged Teacher Education Research Project
Subject
General Materials Science,General Chemical Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献