A Self-Healing PVA-Linked Phytic Acid Hydrogel-Based Electrolyte for High-Performance Flexible Supercapacitors

Author:

Zhao Jing12,Lu Yuanqi1,Liu Yuhua3ORCID,Liu Lanxin1,Yin Jinling1,Sun Baozhi2,Wang Guiling1,Zhang Yongquan1

Affiliation:

1. Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

2. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

3. Jixi Quality Inspection and Testing Center of Graphite Product, Jixi 158100, China

Abstract

Flexible supercapacitors can be ideal flexible power sources for wearable electronics due to their ultra-high power density and high cycle life. In daily applications, wearable devices will inevitably cause damage or short circuit during bending, stretching, and compression. Therefore, it is necessary to develop proper energy storage devices to meet the requirements of various wearable electronic devices. Herein, Poly(vinyl alcohol) linked various content of phytic acid (PVA-PAx) hydrogels are synthesized with high transparency and high toughness by a one-step freeze-thaw method. The effects of different raw material ratios and agents on the ionic conductivity and mechanical properties of the hydrogel electrolyte are investigated. The PVA-PA21% with 2 M H2SO4 solution (PVA-PA21%-2 M H2SO4) shows a high ionic conductivity of 62.75 mS cm−1. Based on this, flexible supercapacitors fabricated with PVA-PA21%-2 M H2SO4 hydrogel present a high specific capacitance at 1 A g−1 after bending at 90° (64.8 F g−1) and for 30 times (67.3 F g−1), respectively. Moreover, the device shows energy densities of 13.5 Wh kg−1 and 14.0 Wh kg−1 at a power density of 300 W kg−1 after bending at 90° and for 30 times during 10,000 cycles. It provides inspiration for the design and development of electrolytes for related energy electrochemical devices.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Heilongjiang Province jointly guided project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3