Passive Daytime Radiative Cooling of Silica Aerogels

Author:

Ma Bingjie12,Cheng Yingying2,Hu Peiying2,Fang Dan3,Wang Jin12ORCID

Affiliation:

1. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China

2. Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

3. Suzhou Institute of Metrology, Suzhou, 215128, China

Abstract

Silica aerogels are one of the most widely used aerogels, exhibiting excellent thermal insulation performance and ultralow density. However, owing to their plenitude of Si-O-Si bonds, they possess high infrared emissivity in the range of 8–13 µm and are potentially robust passive radiative cooling (PRC) materials. In this study, the PRC behavior of traditional silica aerogels prepared from methyltrimethoxysilane (MTMS) and dimethyldimethoxysilane (DMDMS) in outdoor environments was investigated. The silica aerogels possessed low thermal conductivity of 0.035 W/m·K and showed excellent thermal insulation performance in room environments. However, sub-ambient cooling of 12 °C was observed on a clear night and sub-ambient cooling of up to 7.5 °C was achieved in the daytime, which indicated that in these cases the silica aerogel became a robust cooling material rather than a thermal insulator owing to its high IR emissivity of 0.932 and high solar reflectance of 0.924. In summary, this study shows the PRC performance of silica aerogels, and the findings guide the utilization of silica aerogels by considering their application environments for achieving optimal thermal management behavior.

Funder

Suzhou Municipal Science and Technology Bureau

Science and Technology Project of Jiangsu Market Supervisory Authority

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3