SEMG Feature Extraction Based on Stockwell Transform Improves Hand Movement Recognition Accuracy

Author:

She ,Zhu ,Tian ,Wang ,Yokoi ,Huang

Abstract

Feature extraction, as an important method for extracting useful information from surfaceelectromyography (SEMG), can significantly improve pattern recognition accuracy. Time andfrequency analysis methods have been widely used for feature extraction, but these methods analyzeSEMG signals only from the time or frequency domain. Recent studies have shown that featureextraction based on time-frequency analysis methods can extract more useful information fromSEMG signals. This paper proposes a novel time-frequency analysis method based on the Stockwelltransform (S-transform) to improve hand movement recognition accuracy from forearm SEMGsignals. First, the time-frequency analysis method, S-transform, is used for extracting a feature vectorfrom forearm SEMG signals. Second, to reduce the amount of calculations and improve the runningspeed of the classifier, principal component analysis (PCA) is used for dimensionality reduction of thefeature vector. Finally, an artificial neural network (ANN)-based multilayer perceptron (MLP) is usedfor recognizing hand movements. Experimental results show that the proposed feature extractionbased on the S-transform analysis method can improve the class separability and hand movementrecognition accuracy compared with wavelet transform and power spectral density methods.

Funder

Beijing Advanced Innovation Center of Intelligent Robots and Systems

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lung Sound Classification via Improved Deep Architecture with Transform and Spectral Feature set;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

2. Metodología para la identificación de músculos en el reconocimiento de gestos mediante métodos de aprendizaje automático;Investigación en Discapacidad;2024

3. Current developments in surface electromyography;Turkish Journal of Medical Sciences;2023-10-26

4. Unsupervised Domain Adaptation by Causal Learning for Biometric Signal-based HCI;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-09-26

5. Empirical Myoelectric Feature Extraction and Pattern Recognition in Hemiplegic Distal Movement Decoding;Bioengineering;2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3