Author:
She ,Zhu ,Tian ,Wang ,Yokoi ,Huang
Abstract
Feature extraction, as an important method for extracting useful information from surfaceelectromyography (SEMG), can significantly improve pattern recognition accuracy. Time andfrequency analysis methods have been widely used for feature extraction, but these methods analyzeSEMG signals only from the time or frequency domain. Recent studies have shown that featureextraction based on time-frequency analysis methods can extract more useful information fromSEMG signals. This paper proposes a novel time-frequency analysis method based on the Stockwelltransform (S-transform) to improve hand movement recognition accuracy from forearm SEMGsignals. First, the time-frequency analysis method, S-transform, is used for extracting a feature vectorfrom forearm SEMG signals. Second, to reduce the amount of calculations and improve the runningspeed of the classifier, principal component analysis (PCA) is used for dimensionality reduction of thefeature vector. Finally, an artificial neural network (ANN)-based multilayer perceptron (MLP) is usedfor recognizing hand movements. Experimental results show that the proposed feature extractionbased on the S-transform analysis method can improve the class separability and hand movementrecognition accuracy compared with wavelet transform and power spectral density methods.
Funder
Beijing Advanced Innovation Center of Intelligent Robots and Systems
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献