Interference Mitigation in Automotive Radars Using Pseudo-Random Cyclic Orthogonal Sequences

Author:

Skaria Sruthy,Al-Hourani AkramORCID,J. Evans Robin,Sithamparanathan KandeepanORCID,Parampalli Udaya

Abstract

The number of small sophisticated wireless sensors which share the electromagnetic spectrum is expected to grow rapidly over the next decade and interference between these sensors is anticipated to become a major challenge. In this paper we study the interference mechanisms in one such sensor, automotive radars, where our results are directly applicable to a range of other sensor situations. In particular, we study the impact of radar waveform design and the associated receiver processing on the statistics of radar–radar interference and its effects on sensing performance. We propose a novel interference mitigation approach based on pseudo-random cyclic orthogonal sequences (PRCOS), which enable sensors to rapidly learn the interference environment and avoid using frequency overlapping waveforms, which in turn results in a significant interference mitigation with analytically tractable statistical characterization. The performance of our new approach is benchmarked against the popular random stepped frequency waveform sequences (RSFWS), where both simulation and analytic results show considerable interference reduction. Furthermore, we perform experimental measurements on commercially available automotive radars to verify the proposed model and framework.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interference Mitigation in Multi-radar Environment Using LSTM-Based Recurrent Neural Network;Lecture Notes in Computer Science;2024

2. Hybrid Passive-Active Approach for Interference Mitigation in Spaceborne SAR;2023 IEEE International Radar Conference (RADAR);2023-11-06

3. Interference Management in Mobile Joint Communication and Radar Networks;2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall);2023-10-10

4. Analysis and Mitigation of Interference in a Multi-RADAR Environment;2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM);2023-03-07

5. Waveform optimization with SINR criteria for FDA radar in the presence of signal-dependent mainlobe interference;Signal Processing;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3