TomoSAR Imaging for the Study of Forested Areas: A Virtual Adaptive Beamforming Approach

Author:

Martín del Campo Gustavo,Shkvarko Yuriy,Reigber AndreasORCID,Nannini Matteo

Abstract

Among the objectives of the upcoming space missions Tandem-L and BIOMASS, is the 3-D representation of the global forest structure via synthetic aperture radar (SAR) tomography (TomoSAR). To achieve such a goal, modern approaches suggest solving the TomoSAR inverse problems by exploiting polarimetric diversity and structural model properties of the different scattering mechanisms. This way, the related tomographic imaging problems are treated in descriptive regularization settings, applying modern non-parametric spatial spectral analysis (SSA) techniques. Nonetheless, the achievable resolution of the commonly performed SSA-based estimators highly depends on the span of the tomographic aperture; furthermore, irregular sampling and non-uniform constellations sacrifice the attainable resolution, introduce artifacts and increase ambiguity. Overcoming these drawbacks, in this paper, we address a new multi-stage iterative technique for feature-enhanced TomoSAR imaging that aggregates the virtual adaptive beamforming (VAB)-based SSA approach, with the wavelet domain thresholding (WDT) regularization framework, which we refer to as WAVAB (WDT-refined VAB). First, high resolution imagery is recovered applying the descriptive experiment design regularization (DEDR)-inspired reconstructive processing. Next, the additional resolution enhancement with suppression of artifacts is performed, via the WDT-based sparsity promoting refinement in the wavelet transform (WT) domain. Additionally, incorporation of the sum of Kronecker products (SKP) decomposition technique at the pre-processing stage, improves ground and canopy separation and allows for the utilization of different better adapted TomoSAR imaging techniques, on the ground and canopy structural components, separately. The feature enhancing capabilities of the novel robust WAVAB TomoSAR imaging technique are corroborated through the processing of airborne data of the German Aerospace Center (DLR), providing detailed volume height profiles reconstruction, as an alternative to the competing non-parametric SSA-based methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spaceborne SAR stereoscopic intersection capability analysis and accuracy verification;International Journal of Applied Earth Observation and Geoinformation;2024-06

2. Building profile reconstruction based on double subspace TomoSAR;International Journal of Remote Sensing;2023-01-02

3. A Probabilistic Approach for Stereo 3D Point Cloud Reconstruction from Airborne Single-Channel Multi-Aspect SAR Image Sequences;Remote Sensing;2022-11-12

4. High Resolution SAR Tomography 3-D Imaging via Sparse Recovery Deep Learning Network;2022 3rd China International SAR Symposium (CISS);2022-11-02

5. T-SAR - A Bi-Static 3D Imaging C-Band Radar for Agriculture Applications – Concept and First Results;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3