Developing an Ensemble Precipitation Algorithm from Satellite Products and Its Topographical and Seasonal Evaluations Over Pakistan

Author:

Rahman Khalil,Shang Songhao,Shahid Muhammad,Li JiangORCID

Abstract

Accurate estimation of precipitation is critical for hydrological, meteorological, and climate models. This study evaluates the performance of satellite-based precipitation products (SPPs) including Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA 3B43-v7), Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN), and PERSIANN-CDR (Climate Data Record), over Pakistan based on Surface Precipitation Gauges (SPGs) at spatial and temporal scales. A novel ensemble precipitation (EP) algorithm is developed by selecting the two best SPPs using the Paired Sample t-test and Principal Component Analysis (PCA). The SPPs and EP algorithm are evaluated over five climate zones (ranging from glacial Zone-A to hyper-arid Zone-E) based on six statistical metrics. The result indicated that IMERG outperformed all other SPPs, but still has considerable overestimation in the highly elevated zones (+20.93 mm/month in Zone-A) and relatively small underestimation in the arid zone (−2.85 mm/month in Zone-E). Based on the seasonal evaluation, IMERG and TMPA overestimated precipitation during pre-monsoon and monsoon seasons while underestimating precipitation during the post-monsoon and winter seasons. However, the developed EP algorithm significantly reduced the errors both on spatial and temporal scales. The only limitation of the EP algorithm is relatively poor performance at high elevation as compared to low elevations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3