A Comparison of Imputation Approaches for Estimating Forest Biomass Using Landsat Time-Series and Inventory Data

Author:

Nguyen Trung,Jones Simon,Soto-Berelov Mariela,Haywood Andrew,Hislop SamuelORCID

Abstract

The prediction of forest biomass at the landscape scale can be achieved by integrating data from field plots with satellite imagery, in particular data from the Landsat archive, using k-nearest neighbour (kNN) imputation models. While studies have demonstrated different kNN imputation approaches for estimating forest biomass from remote sensing data and forest inventory plots, there is no general agreement on which approach is most appropriate for biomass estimation across large areas. In this study, we compared several imputation approaches for estimating forest biomass using Landsat time-series and inventory plot data. We evaluated 18 kNN models to impute three aboveground biomass (AGB) variables (total AGB, AGB of live trees and AGB of dead trees). These models were developed using different distance techniques (Random Forest or RF, Gradient Nearest Neighbour or GNN, and Most Similar Neighbour or MSN) and different combinations of response variables (model scenarios). Direct biomass imputation models were trained according to the biomass variables while indirect biomass imputation models were trained according to combinations of forest structure variables (e.g., basal area, stem density and stem volume of live and dead-standing trees). We also assessed the ability of our imputation method to spatially predict biomass variables across large areas in relation to a forest disturbance history over a 30-year period (1987–2016). Our results show that RF consistently outperformed MSN and GNN distance techniques across different model scenarios and biomass variables. The lowest error rates were achieved by RF-based models with generalized root mean squared difference (gRMSD, RMSE divided by the standard deviation of the observed values) ranging from 0.74 to 1.24. Whereas gRMSD associated with MSN-based and GNN-based models ranged from 0.92 to 1.36 and from 1.04 to 1.42, respectively. The indirect imputation method generally achieved better biomass predictions than the direct imputation method. In particular, the kNN model trained with the combination of basal area and stem density variables was the most robust for estimating forest biomass. This model reported a gRMSD of 0.89, 0.95 and 1.08 for total AGB, AGB of live trees and AGB of dead trees, respectively. In addition, spatial predictions of biomass showed relatively consistent trends with disturbance severity and time since disturbance across the time-series. As the kNN imputation method is increasingly being used by land managers and researchers to map forest biomass, this work helps those using these methods ensure their modelling and mapping practices are optimized.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3